Euclidean farthest-point Voronoi diagram of a digital edge
نویسندگان
چکیده
منابع مشابه
Euclidean farthest-point Voronoi diagram of a digital edge
A digital edge is a digitization of a straight segment joining two points of integer coordinates. Such a digital set may be analytically defined by the rational slope of the straight segment. We show in this paper that the convex hull, the Euclidean farthest-point Voronoi diagram as well as the dual farthest-point Delaunay triangulation of a digital edge can be fully described by the continued ...
متن کاملThe Geodesic Farthest-point Voronoi Diagram in a Simple Polygon
Given a set of point sites in a simple polygon, the geodesic farthest-point Voronoi diagram partitions the polygon into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic metric. We present an O(n log log n+m logm)time algorithm to compute the geodesic farthest-point Voronoi diagram of m point sites in a simple n-gon. This i...
متن کاملEdge-tracing algorithm for euclidean voronoi diagram of 3d spheres
Despite of many important applications in various disciplines from sciences and engineering, Voronoi diagram for spheres in a 3-dimensional Euclidean distance has not been studied as much as it deserves. In this paper, we present an edge-tracing algorithm to compute the Euclidean Voronoi diagram of 3-dimensional spheres in O( ) in the worst-case, where is the number of edges of Voronoi diagram ...
متن کاملOn the Farthest Line-Segment Voronoi Diagram
The farthest line-segment Voronoi diagram shows properties surprisingly different than the farthest point Voronoi diagram: Voronoi regions may be disconnected and they are not characterized by convexhull properties. In this paper we introduce the farthest line-segment hull, a cyclic structure that relates to the farthest line-segment Voronoi diagram similarly to the way an ordinary convex hull ...
متن کاملRealizing Farthest-Point Voronoi Diagrams
1 The farthest-point Voronoi diagram of a set of n sites 2 is a tree with n leaves. We investigate whether arbi3 trary trees can be realized as farthest-point Voronoi di4 agrams. Given an abstract ordered tree T with n leaves 5 and prescribed edge lengths, we produce a set of n sites 6 S in O(n) time such that the farthest-point Voronoi di7 agram of S represents T . We generalize this algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2015
ISSN: 0166-218X
DOI: 10.1016/j.dam.2014.06.017